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Abstract

This document serves two purposes. First, it demonstrates the extensive motion simulation capabili-

ties of working model through the study of several interesting mechanical systems. These mechanical

systems were chosen because they are educational, physically demonstratable, and although relatively

simple, exhibit surprisingly complex motions. It is hoped that some \intuition" for three dimensional

motion may be gleaned from these instructive examples.

Secondly, this document serves to validate various aspects of working model including kinematics,

kinetics, dynamics, contact, and collisions. Detailed example problems demonstrating these key phe-

nomena are given and comparisons of their working model results to closed-form solutions, numerical

solutions from textbooks and published technical papers, and numerical solutions obtained from other

multi-body codes, e.g., autolev, Dads, and Adams are presented. By perusing this report and by

comparing working model with other motion simulation packages, it should be clear what working

model o�ers in contrast to your current motion simulation tools.
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Chapter 1

Benchmarks: Comparison with other

numerical packages

1.1 Serial Mechanism: Robot

Z1
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AZ1

Figure 1.1: Serial Robot from Multibody Systems Handbook

Fig. 1.1 is a schematic representation of a serial robot. This mechanism is important because it served as

one of two benchmark test cases in a recent multibody systems handbook [17] which was contributed to

by many of the manufacturers of dynamic analysis software, e.g., Mechanical Dynamics (Adams), Cadsi

(Dads), and OnLine Dynamics (autolev).

The robot consists of three bodies: the robot base, a robot arm, and a robot hand. The motion of

the robot is controlled by four motors/actuators which lift and rotate the robot arm while extending and

rotating the robot hand. A complete description of the system, including its joints, mass and inertia

properties, and initial values is found in [17, pp. 16-18]. A working model �le named SerialRobot.wm3

is distributed in the Validate directory of the working model CD.
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Figure 1.2: Rotation of Robot Base (AZ1)
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Figure 1.3: Elevation of Robot Arm (Z1)
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Figure 1.4: Extension of Robot Arm (Y2)
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Figure 1.5: Rotation of Robot Hand (CX3)

1.1.1 Results

The simulation results obtained from working model are shown in Figures (1.2-1.5). These graphs

match those generated by Dads [17, pp. 179] and Adams [17, pp. 395]. Numerical results from

working model can be compared to numerical results obtained for the robot hand's global position

from autolev [17, pp. 102] at the end of the simulation (t=2:0 sec). From the table below, it is evident

that working model can produce results which are accurate to one part in a million.

working model x=2.9285459 y=3.209857 z=4.414592

autolev x=2.9285436 y=3.209855 z=4.414599
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1.2 Closed-chain Mechanism: Seven Bar Linkage
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Figure 1.6: Closed-chain Mechanism from Multibody Systems Handbook

Fig. 1.6 is a schematic representation of a closed-chain mechanism. This mechanism is important because

it served as one of two benchmark test cases in a recent multibody systems handbook [17] which was

contributed to by many of the manufacturers of dynamic analysis software, e.g., Mechanical Dynamics

(Adams), Cadsi (Dads), and OnLine Dynamics (autolev).

The mechanism consists of seven bodies interconnected by revolute joints without friction. This

one degree of freedom mechanism is driven by a constant-torque motor located at point O, A complete

description of the system, including its joints, mass and inertia properties, and initial values is found in

[17, pp. 10-15]. A working model �le named ClosedLoop.wm3 is distributed in the Validate directory

of the working model CD.

1.2.1 Results

The simulation results obtained from working model are shown in Figures (1.7-1.10). These graphs

match those generated by Adams [17, pp. 394]. Dads did not produce results for this problem. Nu-

merical results from working model can be compared to numerical results obtained for �, , and �,

from autolev [17, pp. 99] after several revolutions (t=0:03sec). From the table below, it is evident

that working model produces results accurate to three signi�cant digits, the same accuracy given in

the initial values in [17]. One interesting note is that the Adams simulation was reported to require

182 equations and 380 CPU seconds on a Vaxstation 2000. working model required only 35 equations,

20 seconds of calculation time, and 21 seconds of display time on a 266 Mhz Pentium PC.

working model =0.0407 rad �=15.81 rad �=0.5244 rad

autolev =0.0409 rad �=15.81 rad �=0.5247 rad
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Figure 1.7: Time History of �
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Figure 1.8: Time History of 
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Figure 1.9: Time History of �
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Figure 1.10: Magnitude of Spring Force
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Chapter 2

Textbook Problems

2.1 Chaotic Systems: The Babyboot

qA

qB

B

A

Figure 2.1: Babyboot Schematic

Fig. 2.1 is a schematic representation of a swinging babyboot attached by a shoelace to a rigid support.

This simple system is interesting because at times, its motion is \chaotic", meaning that small pertur-

bations in initial values or inaccuracies in numerical integration lead to dramatically di�erent results.

In order to produce simulations, one must formulate equations of motion and numerically integrate the

resulting dynamical di�erential equations. The results of this problem were compared with numerical

result from [9, pp. 339-340]

The modeling of the system in Fig. 2.1 is done with a thin uniform rod A and a uniform plate B.

The rod A is attached to a �xed support by a revolute joint and B is connected to A at the mass center

of B in such a way that B can rotate freely about the axis of A. (Note: the revolute joints' axes are

perpendicular not parallel.) The quantities qA and qB denote angles associated with the rotation of A and

B, respectively. A complete description of the system, including its joints, mass and inertia properties,

and initial values is found in [9, pp. 329-330, 339-340]. A working model �le named babyboot.wm3 is
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QB(0) = 0.5
QB(0) = 1.0

Figure 2.2: qB(t) with qA(0) = 45�
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QB(0) = 0.5
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Figure 2.3: qB(t) with qA(0) = 90�

distributed in the Validate directory of the working model CD.

2.1.1 Results

The simulation results obtained from working model are shown in Figures (2.2-2.3). These graphs

match those found in [9, pp. 339-340]. In order to produce Fig. 2.2, qA(0) was set to 45� and qB(0)

was set to either 0:5� or 1:0�. As can be seen, qB is stable, meaning that as qB(0) is made su�ciently

small, qB(t) can be made arbitrarily small. Although qB is stable for small values of qA(0), larger values

of qA(0) cause instability in qB . This fact is evident from Fig. 2.3 which shows that qB is very sensitive

to initial values. A 1=2� degree change in the value of qB(0) results in a 2000� di�erence in the value

of qB(10)! This sensitivity also manifests itself in other ways. Loose numerical integration tolerances

or nearly any numerical inaccuracies produce vastly di�erent results than the ones shown in Fig. 2.3.

Because of this fact, this relatively simple problem serves as a good test problem for working model.

Another non-intuitive phenomenon of this problem is that increasing qA(0) further to 135� restabilizes

qB , but as qA(0) gets close to 180�, it destabilizes qB once more.

Numerical results from working model can be compared to numerical results obtained for qA and

qB at t=10:0 sec for a simulation with initial values of qA(0) = 90� and qB(0) = 1�. From the table below,

it is clear that working model produces accurate results.

working model qA=�61:17
� qB=�928:347

�

Kane and Levinson qA=�61:313
� qB=�929:478

�
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2.2 Stability Analysis: Torque-free Motions of a Rigid Body

Figure 2.4: Spinning Book

The equations which govern the rotational motions of a single rigid body pose an analytical challenge

because they are nonlinear and have closed form solutions only in a few special cases. This fact highlights

one of the many di�culties in performing 3D motion simulations. In this section, the rotational motion

of a torque-free rigid body is examined and compared with a closed form solution in [6, pp. 96-124].

The closed form solution is not presented here because it is fairly complicated and involves Jacobi elliptic

functions. A complete description of this system can be ascertained from the working model �le named

BookSpin.wm3, which is distributed in the Validate directory of the working model CD.

The pertinant features of the rigid body B under consideration are that B has central principal

moments of inertia I1, I2, I3 where I1 � I2 � I3 and B is rotating with an inertial angular velocity

!1b1 + !2b2 + !3b3. The unit vectors b1, b2, and b3 are �xed in B and parallel to the central principal

axes of B. After choosing numerical values of 416kgm2, 916 kgm2, and 1300kgm2, for I1, I2, and I3,

respectively, three cases were simulated for 10 secs with an integration step of 0:02secs and an absolute

error tolerance of 1:0e�5. The initial values for each of the cases are given below.

Case !1(0) rad=sec !2(0) rad=sec !3(0) rad=sec

1 5 0 0:05

2 0:05 5 0

3 0 0:05 5

Case 1 represents a perturbation of a simple spin about b1, the minimum principal axis. Spin

about the mimimum principal axis is said to be stable in the Liapunov sense. This is evident from the

animation in BookSpin.wm3 and from Figure 2.5 which displays the minor variation in the values , the

angle1 between the (�xed) angular momentum vector h and b1.

Case 2 is a perturbation of a simple spin about b2, the intermediate principal axis. Spin about the

1In classical mechanics literature,  is called the nutation angle
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Figure 2.5: -Minor Axis
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Figure 2.6: -Intermediate Axis
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Figure 2.7: -Major Axis

intermediate axis is unstable. This is evident from the animation in BookSpin.wm3 and from Figure 2.6

which shows the dramatic variation in the values of the angle between h and b2.

Lastly, Case 3 is a perturbation of a simple spin about b3, the maximum principal axis. Spin about

the maximum axis is stable. This is shown in the animation in BookSpin.wm3 and in Figure 2.6 which

displays the minor variation in the values of the angle between h and b3.

The accuracy of working model results can be determined from a variety of tests. One test is the

ability of working model to maintain the constancy of kinetic energy and the magnitude of angular

momentum, two quantities which are theoretical conserved during the simulation. A second test is the

error in !1, !2, and !3 at 10 secs. From the table below, the accuracy of working model can be inferred.

Maximum Error in Maximum Error in Error in Error in Error in

Case Energy (joules) Angular Momentum !1(10) rad=sec !2(10) rad=sec !3(10) rad=sec

1 6:0e�12 1:2e�12 3:5e�10 2:7e�8 2:4e�8

2 6:3e�8 1:2e�8 2:6e�7 2:4e�6 1:7e�7

3 1:8e�11 3:6e�12 2:6e�7 1:8e�8 7:1e�11
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2.3 Centrifugal Forces: The Governor
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Figure 2.8: Centrifugal Governor
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Figure 2.9: Convergence of � on exact result

The equations which govern the con�guration of a device undergoing steady motion are not readily

solved by most multibody numerical codes. However, the steady state con�guration of the system may

be determined by simulating the full nonlinear motion and adding damping to the system so that it

ultimately settles to the desired con�guration. In this section, the steady motion of a centrifugal governor

is examined and compared with a closed form solution in [5, pp. 193-194]. A complete description of this

system can be ascertained from the working model �le named Governor.wm3, which is distributed in

the Validate directory of the working model CD.

The yball engine governor depicted in Figure 2.8 consists of two uniform spheres S of mass mS

and a third heavier particle P of mass mP linked together by light hinged bars of length L as shown.

The particle P can slide freely on a vertical shaft, which spins at a uniform angular speed !. Due to

centrifugal forces on the spheres, P can be lifted so that �, the angle between the local vertical and one

of the light bars, depends on !. According to [5, pp. 193-194], the value of � is governed by the nonlinear

algebraic equation
tan �

sin � + a=l
= !2

mS l

(mS +mP )g
(2.1)

Substituting the values !=1200deg=sec,mS=2:0kg,mP=10kg, L=0:254m, a=0:0508m, and g=9:81m=sec2,

into equation (2.1) produces
tan �

sin � + 0:2
= 1:89291314069 (2.2)

Equation (2.2) can be solved with a multitude of methods including trial and error and graphical methods

as well as the method of bisection, secant, Brent, Ridder, or Newton-Rhapson. The numerical solution of

equation (2.2) is �=64:381201� . With working model, one does not have to deal with solving di�cult

nonlinear equations, instead it is only necessary to add damping and run the simulation until � converges

to its quasi-static value. After 3 seconds, the working model value for � is 64:38123205� within 3:2e�5
�

of the exact result. Figure 2.9 demonstrates the convergence of � to its theoretical value.
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2.4 Static Constraint Forces: The Telescoping Arm
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Figure 2.10: Telescoping Arm Schematic

Fig. 2.10 is a schematic representation of a telescoping arm used to elevate a platform for construction and

utilities workers. The system consists of light bucket C carrying men and equipment of weight 500 lbs,

a light telescoping arm ABC, and a piston between B and D which controls the angle � between the

horizontal and ABC. This system was chosen to validate static solutions produced by working model,

and the results of this problem were compared with a closed form solution from [1, pg. 557]. A working

model �le named telescop.wm3 is distributed in the Validate directory of the working model CD.

2.4.1 Results

The magnitude of the force exerted by the piston on the telescoping arm as a function of � is shown in

Figure 2.11. The values found in this graph match those produced by autolev and exactly match those

found in [1, pg. 557] when theta=20� . The information in Figure 2.11 is useful for sizing the piston's

hydraulic motor.
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Figure 2.11: Magnitude of piston force vs. �
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2.5 Collisions: Newton's Cradle

V1 Vn

Figure 2.12: Newton's Cradle1 Figure 2.13: Newton's Cradle2

Fig. 2.12 is a schematic representation of an executive desk toy, sometimes called a \Newton's Cradle".

This system was chosen to validate collision solutions produced by working model. The working

model results of this problem, available in the NewtonCradle.wm3 �le, were compared with a closed

form solution in [10, pp. 206-207]. working model uses impulse-momentum theory and a coe�cient of

restitution in predicting collision responses.2

The system in Fig. 2.12 consists of �ve homogenous spheres of equal mass m suspended by parallel

wires of equal length L so that the spheres are touching each other. The �rst sphere is released so that

it strikes the second sphere with a speed v1. The coe�cient of restitution between all the spheres is e.

2.5.1 Results

When the �rst sphere strikes the second, which subsequently strikes the third, etc., the center of mass

of the nth sphere is theoretically imparted a velocity of magnitude vn = v1
�
1+e
2

�
n�1

The following table

compares the theoretical results for v5 with those obtained for working model for various values of e.3

Coe�cient of restitution Theoretical solution Working Model solution Di�erence

1.0 0.7880776 0.7881982 1:2e�4

0.75 0.4620277 0.4619566 7:1e�5

0.5 0.2493527 0.2493911 3:8e�5

A second simulation was run with a common coe�cient of restitution of e = 1 and with the �rst two

spheres released so that they strike the third with a speed v1 (see Figure 2.13). Theoretically, the fourth

and �fth spheres are both imparted a speed of v1, thus conserving both momentum and energy. A

working model �le named NewtonCradle2.wm3 shows that the energy is conserved to within 5:0e�5

and the ensuing motion is correctly rendered.

2Mechanical designs should not be predicated on collision solutions which arise from using impulse-momentum theory

and a coe�cient of restitution. This theory is a gross approximation to the actual collision event.
3The working model results for e � 0:5 are substantially more accurate than those for e < 0:5.
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